A hybrid approach for modeling financial time series

نویسندگان

  • Alina Barbulescu
  • Elena Bautu
چکیده

The problem we tackle concerns forecasting time series in financial markets. AutoRegressive Moving-Average (ARMA) methods and computational intelligence have also been used to tackle this problem. We propose a novel method for time series forecasting based on a hybrid combination of ARMA and Gene Expression Programming (GEP) induced models. Time series from financial domains often encapsulate different linear and non-linear patterns. ARMA models, although flexible, assume a linear form for the models. GEP evolves models adapting to the data without any restrictions with respect to the form of the model or its coefficients. Our approach benefits from the capability of ARMA to identify linear trends as well as GEP’s ability to obtain models that capture nonlinear patterns from data. Investigations are performed on real data sets. They show a definite improvement in the accuracy of forecasts of the hybrid method over pure ARMA and GEP used separately. Experimental results are analyzed and discussed. Conclusions and some directions for further research end the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING

Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...

متن کامل

Overview and Comparison of Short-term Interval Models for Financial Time Series Forecasting

  In recent years, various time series models have been proposed for financial markets forecasting. In each case, the accuracy of time series forecasting models are fundamental to make decision and hence the research for improving the effectiveness of forecasting models have been curried on. Many researchers have compared different time series models together in order to determine more efficien...

متن کامل

A Three-phase Hybrid Times Series Modeling Framework for Improved Hospital Inventory Demand Forecast

Background and Objectives: Efficient cost management in hospitals’ pharmaceutical inventories have the potential to remarkably contribute to optimization of overall hospital expenditures. To this end, reliable forecasting models for accurate prediction of future pharmaceutical demands are instrumental. While the linear methods are frequently used for forecasting purposes chiefly due to their si...

متن کامل

Voltage Regulation of DC-DC Series Resonant Converter Operating in Discontinuous Conduction Mode: The Hybrid Control Approach

Dynamic modeling and control of dc-dc series resonant converter (SRC) especially when operating in discontinuous conduction mode (DCM) is still a challenge in power electronics. Due to semiconductors switching, SRC is naturally represented as a switched linear system, a class of hybrid systems. Nevertheless, the hybrid nature of the SRC is commonly neglected and it is modeled as a purely contin...

متن کامل

A hybrid computational intelligence model for foreign exchange rate forecasting

Computational intelligence approaches have gradually established themselves as a popular tool for forecasting the complicated financial markets. Forecasting accuracy is one of the most important features of forecasting models; hence, never has research directed at improving upon the effectiveness of time series models stopped. Nowadays, despite the numerous time series forecasting models propos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. Arab J. Inf. Technol.

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2012